Signature and Name of Invigilator

1.	(Signature)
	(Name)
2.	(Signature)
	(Name)

OMR Sheet No.:(To be filled by the Candidate)								
Roll No.								
•	(In fig	ures a	is per	adm	ission	card)
Roll No.								

J 0 8 9 1 8

PAPER - II

(In words)

Time: 2 hours] ENVIRON

ENVIRONMENTAL SCIENCES [Maximum Marks : 200

Number of Pages in this Booklet: 24

Number of Questions in this Booklet: 100

Instructions for the Candidates

- Write your roll number in the space provided on the top of this page.
- 2. This paper consists of hundred multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: (1) (2) (4) where (3) is the correct response.

- Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

- परीक्षार्थियों के लिए निर्देश
- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में सौ बहुविकल्पीय प्रश्न हैं।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्निलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - (i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं।
 आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण: 1) 2) 🌑 4) जबिक (3) सही उत्तर है।

- प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 3. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही प्रयोग करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

J-08918

1 P.T.O.

ENVIRONMENTAL SCIENCES

PAPER - II

Note: This paper contains **hundred** (100) objective type questions of **two** (2) marks each. All questions are **compulsory**.

- 1. For a thermally comfortable, seated bare bodied person at 25°C, the maximum energy loss is due to :
 - (1) Radiation
- (2) Convection
- (3) Conduction
- (4) Evaporation
- 2. High concentrations of pollutants at ground level during winter season are due to:
 - (1) Radiation inversion
- (2) Subsidence inversion
- (3) Frontal inversion
- (4) Landscape induced inversion
- 3. The theme 'Transforming our world : 2030 Agenda' pertains to :
 - (1) Protection of ozone layer
- (2) Climate change Action plans
- (3) Sustainable development goals
- (4) Millennium development goals
- 4. At a latitude of 30° , there is pressure gradient of 5.0 mb per 100 km. Given the density of air $\sim 1.25 \text{ kg/m}^3$, the geostrophic winds will have velocity (m/s):
 - (1) 5.48 m/s
- (2) 54.86 m/s
- (3) 109.72 m/s
- (4) 27.43 m/s
- **5.** The basic nature of lithosphere does not arise from element(s):
 - (1) Na and K
- 2) Ca
- (3) Mg
- (4) Si
- 6. If the tropospheric lapse rate be 6.5° C/km and if T denotes temperature and Z denotes the altitude then :
 - $(1) \quad \frac{\mathrm{dT}}{\mathrm{dZ}} = 6.5^{\circ}\mathrm{C/km}$

 $(2) \quad \frac{dT}{dZ} = -6.5^{\circ}C/km$

(3) $\frac{dZ}{dT} = 6.5^{\circ}C/km$

 $(4) \quad \frac{dZ}{dT} = -6.5^{\circ}C/km$

J-08918

2

- (1) The internal energy of the universe is constant.
- (2) Energy can be neither created nor destroyed.
- (3) At absolute zero, entropy of a substance is considered to be zero.
- (4) When an isolated system undergoes a spontaneous change, the entropy of the universe increases.

8. Tropical cyclones occur on :

(1) Meso - scale

(2) Micro - scale

(3) Planetary scale

(4) Synoptic scale

9. If e and p are vapour pressure of water and total pressure of moist air, the equation of state for moist atmosphere can be written as :

(1)
$$PV \simeq RT \left[1 + \frac{e}{p} \right]$$

(2)
$$PV \simeq RT \left[1 - \frac{e}{p} \right]$$

(3)
$$PV = RT \left[1 + 0.38 \frac{e}{p} \right]$$

(4)
$$PV = RT \left[1 + 0.62 \frac{e}{p} \right]$$

10. Select the incorrect statement about the redox potential of aqueous solutions :

- (1) As the concentration of molecular oxygen increases, the redox potential increases.
- (2) As the concentration of hydrogen ions increases, the redox potential increases.
- (3) As the concentration of molecular oxygen decreases, the redox potential decreases.
- (4) As the concentration of hydrogen ions decreases, the redox potential increases.

11. Match the List - I and List - II. Identify the correct answer from the codes given below :

List - I

(Analyte)

List - II

a) Lead

(Method)
(i) Winkler Method

3

- (b) Dissolved oxygen
- (ii) Gravimetric Method

(c) SO₂

(iii) GC-MS

(d) PAH

(iv) West Gaeke Method

Code :

J-089		CO ₂ , N11 ₃ , C ₂ 11	. ₅ O11 a	and 11 ₂ 0	4					Pa	per-II
20.	(1)	as produced by t CO_2 , SO_2 , N_2O_2 CO , CO_2 , H_2S , CH_4 , CO_2 NH_3 , CO_2 , NH_3 , C_2H_3	CH ₄ CH ₄ a H ₂ S a	and H ₂ O and natural and H ₂ O		s a mi	xture of :				
	(1)	TOC	(2)	COD		(3)	BOD		(4)	DO	
19.	The of :	best way for ass	essing	the organic	c com	ponei	nt of a wa	ater san	nple is	the determi	ination
4	(1) (3)	0.2 N 0.01 N	Ŋ		(2) (4)	0.00 0.05					
18.	com	volumetric titratiplete neutralizati	on.	20 11	eous]	HCl s	solution, r	needs 1	0 ml o	f 0.1 N NaC	OH for
17.		ee coloured sheets ght incident upor 9.0% 51.2%					ight trans 5%				
16.		many gram of c acid?		acid (molar	r mas	s = 60 (3)) g/mole) 6.0 g	are pr	esent i (4)	n 100 ml of 60.0 g	0.1 M
	(1)	CO	(2)	NO		(3)	SO ₂		(4)	CFCs	
15.	-	hemical reaction, the atmosphere		ydroxyl radi	icals fa	ail to	remove w	hich of	the fol	lowing trace	e gases
14.	Toxio (1) (3)	city of which of t Arsenic Lead	he fol	lowing meta	(2) (4)	Cad	ue to reac mium omium	tion wi	th sulfl	nydryl grouj	o ?
	(3) (4)	These are stable These have high		_						3	
	(1) (2)	These are water These are fire re			ce b10	accur	nulate.				
13.		tify the incorrect		U	0		•				

(3) SO₂

(4) CO₂

The main acidic component of the present atmosphere is : (2) NO_x

12.

(1)

HC1

	(1) (3)	Bicarbona Sulfate	te	(2) (4)	Chloride Sodium
22.	In w	hich of the	following ecosystems, t	the foo	od web involves more species and more trophic
v	level				ou was need not a species und need deplie
	(1) (3)	Rain fores Desert	t	(2) (4)	Ocean Glacier
23.		en below are	e two statements. One	label	led as Assertion (A) and the other labelled as
	Asse	ertion (A) :	The available energy chain.	of ar	n ecosystem decreases with the length of food
	Reas	son (R) :	At each transfer of energy is lost as heat.	nergy	in food chain, a large proportion of potential
	Cho		ect answer :		
	(1)				the correct explanation of (A).
	(2)			(R) is	s not the correct explanation of (A).
	(3)	` '	, but (R) is false.		mel
	(4)	(A) is talse	e, but (R) is true.	L.	(11)
24.	The	origin of eu	karyotic cell on earth t	ook p	lace :
	(1) (3)		on years ago n years ago	(2) (4)	1850 Million years ago 1000 Million years ago
			613		
25.	Ratio			phic l	evels in the food chain is called :
	(1)	Metabolic Energy flo	5	(2)	Ecological efficiency Food chain complexity
4	(3)	Effergy 110	w rate	(4)	rood chain complexity
26.		which stag Respiration		essio	on, an ecosystem exhibits, photosynthesis
	(1)	Pioneer sta		(2)	Mid seral stage
	(3)	Climax sta		(4)	Early seral stage
	- 1	1			
27.		species dete called :	rmining the ability of la	rge nı	umber of other species to persist in a community,
	(1)	Indicator s	*	(2)	Keystone species
	(3)	Dominant	species	(4)	Endemic species
J-089	918			5	Paper-II

The percentage concentration of which of the following ions is highest in sea water?

21.

	(d)	Decreases towards the equator			1.0
	Cho	ose the correct code :			63
	(1)	(a) and (d)	(2)	(a) and (b)	11 - (1)
	(3)	(a) and (c)	(4)	(b) and (c)	61
					11 700
29.	Arct	ic Tundra is situated around :		4. 1	2 ×
	(1)	66.5° N	(2)	55.5° N	600
	(3)	45° N	(4)	66.5° S	
			1		
30.	Mair	n limiting factor governing primary	prod	uctivity in p	elagic zone of the ocean is :
	(a)	Light	3.0		. /
	(b)	Available nutrients	4	- (***
	(c)	Number of primary producers	4		
	(d)	Tidal current			
	Cho	ose the correct code :			
	(1)	(a) only	(2)	(a) and (b)	only
	(3)	(a), (b) and (c) only	(4)	(a), (b), (c)	and (d)
		4			
31.	The	nature of food web at the developr	nenta	l stage of a s	uccession is :
((1)	linear, predominantly grazing		(2)	linear, predominantly detritus
	(3)	weblike, predominantly detritus		(4)	weblike, predominantly grazing
	1				
32.		d on the casualties reported worldwerial disease?	ide, w	hich one of th	ne following is most deadly airborne
	(1)	Diphtheria	(2)	Whooping	cough
	(3)	Pneumonia	(4)	Meningitis	
T 004	010				n
J-089	918		6		Paper-II

Biodiversity:

Increases towards the Arctic region

Decreases towards the Arctic region

Increases towards the equator

(a)

(b)

(c)

28.

33.	Match the List - I and List -II. Identify the correct answer from the code given below :													
	List - I							List - II						
		(End	anger	ed an	imals	s)								
	(a)	Lion	tailed	Maca	aque		(i)	Hima	alayaı	n foothills				
	(b)	Gold	en La	ngur			(ii)	Jamn	nu an	ıd Kashmir				
	(c)	Spott	ted Li	nsang	•		(iii)	West	ern C	Ghats		4.6		
	(d)	Palla	s's ca	t			(iv)	Cent	ntral and Eastern Himalayas					
	Code	ode:										-021		
		(a)	(b)	(d)						<	10 10			
	(1)	(ii)	(i)	(iii)	(iv)						(N. A.		
	(2)	(iii)	(i)	(iv)	(ii)						44	90		
	(3)	(iv)	(iii)	(ii)	(i)					5	42	7.6		
	(4)	(i)	(ii)	(iv)	(iii)					36 1	6			
									A	1 1	9			
34.	Repr	oduct	ive isc	olation	of po	opulat	ions l	eads t	o :	1 /	-1			
	(1)	infer	tility					(2)	popu	ulation explos	ion			
	(3)	3) speciation						(4)	popu	ulation decline	e			
								3.5		1				
35.	In th	e cont	text of	local	envir	onme	nt, he	leopla		refers to:				
	(1)	Saltw	vater	plank	ton		1	(2)	Pone	d plankton				
	(3)	Strea	m pla	nktor	า	1.		(4)	Lake	plankton				
						-4								
36.		_			-		-	, ,			C, GOI, th	e increase in forest		
				ntry v	410	eferen 2.0%		tne ye			(4)	1.00/		
	(1)	1.8%	4	, ,	(2)	2.0 %			(3)	2.2%	(4)	1.0%		
27	Mhi	sh one	of th	o follo	vuina	in a c	ultima	blo on	ocion	of transcal car	thurann '	2		
37.	(1)		ia feti		wing	15 a C	uitiva	(2)		of tropical ear bricus rubellus		:		
1	(3)		nida ne	45	cic			(2) (4)		pheretima elon				
- ((3)	Diuu	/11111 TI	рисп	313			(1)	1 org	ρικτειτιία εισπ	Sum			
38.	Slow	down	nelone	move	ement	of wa	iter sa	turate	d roc	k mass which	is not con	nfined to a definite		
50.		nel, is			circin	. OI W	itci sa	iturate	u roc	K IIIa33 WIIICII	13 1101 001	united to a definite		
	(1)	Soil	creep		(2)	Debr	is flov	N	(3)	Mudslide	(4)	Solifluction		
			1		` '				` '		()			
39.	Isogo	ons are	e the 1	ooints	whic	h join	beds	of:						
	(1)	Equa	ıl dip	amou	nt			(2)	Sam	e strike direct	ion			
	(3)	Equa	l thic	kness				(4)	Орр	osite strike di	rection			
T 000)10							_				- N		
J-089	918							7				Paper-II		

4 0.	Mate	ch the	List -	I and	l List	- II. Id	lentify	y the	correc	ct answer fro	om the co	de given l	oelow:	
			List	- I				Lis	st - II					
		(Eco	systei	m serv	vice)			(Function)						
	(a)	Prov	isioni	ng			(i)	Nuti	rient o	cycling				
	(b)	Regu	ılating	3			(ii)	Recr	eatio	nal				
	(c)	Cult	ural				(iii)	Carb	on se	equestration			14	
	(d)	Supp	portin	g			(iv)	Phai	mace	euticals		1	631	
	Cod	e :										4 . 5	9/.)	
		(a)	(b)	(c)	(d)							80	52	
	(1)	(i)	(ii)	(iii)	(iv)							1		
	(2)	(iv)	(iii)	(ii)	(i)						-14	30		
	(3)	(i)	(iv)	(iii)	(ii)					5 2	EN			
	(4)	(iv)	(iii)	(i)	(ii)				1	01/	00			
									0	11	44			
41.	Cart	ostat -	- 2 sat	ellite l	has a	spatial	resol	lution	of:	1/	- 1			
	(1)	bette	er than	n 1 m	(2)	2 m		- 1	(3)	5.8 m	(4)	23 m		
										1/				
42.	L - t	and i	n mic	rowav	e rem	ote sei	nsing	provi	des ir	nformation a	bout scat	tering from	m:	
	(a)	Volu	ıme		(b)	Soil	7	4	(c)	Canopy	(d)) Trunks	s and boles	
	Cho	ose th	e corr	ect co	de:	, 4	d.	4		7				
	(1)	(a) o	nly			_14		(2)	(a),	(b), only				
	(3)	(a), ((b), (c))	4.6			(4)	(a),	(b), (d) only				
				4	25									
43.			-	M	Wat 1	ng repl	enish			s turnover d				
	(a)		5.00	nd sp				(b)		umn and wi				
4	(c)		- 4	nd w				(d)	Sum	mer and sp	ring			
1		ose th		ect co										
- ((1)	(a) o	nly	1	(2)	(b) o	nly		(3)	(c) only	(4)	(d) onl	У	
	9	#/		1										
44.	100	pollut			•			<i>(</i> 1)						
	(a)			waste	9			(b)	·	ochemicals				
	(c)		ochen					(d)	Dete	ergents				
	+10	ose th			de :			(2)	<i>a</i> .	()				
	(1)	, ,	nd (b)	•	/ 1)			(2)	. ,	(c) and (d) o	only			
	(3)	(a), ((b), (c)	and	(d)			(4)	(c) a	and (d) only				
T_NQ	J-08918 Paper-II													
J-08	710							0					1 aper-11	

45 .		n aquifer having a of 1 m over a dis		-		-	•		er table sloping at a
	(1)	0.005 mm/s		(2)	0.001	0 mr	n/s		
	(3)	0.0015 mm/s		(4)	0.002	.5 mr	n/s		
46 .	Seisr	nic waves travel	faster	through:					- 34
	(1)	Gas	(2)	Liquid		(3)	Solid	(4)	Lava
								<	11 10
4 7.	Urba	n Heat Island effe	ect is b	est studied	using	remo	te sensing in the	e follow	ing spectral region :
	(a)	0.5 - 0.9 μm	(b)	3 - 5 μm		(c)	10 - 12 μm	(d)	3 - 6 cm
	Cho	ose the correct co	de:					15	7
	(1)	(a) only	(2)	(a) and (b)	only	(3)	(a) and (c) on	ly (4)	(a) and (d) only
						A	11	9	
48.	In la	ndscape ecologica	al stud	dies, the terr	n land	lscap	e process inclu	des :	
	(a)	The exchange of	f mate	erials and er	nergy		1/		
	(b)	Exchange or mo	veme	nt of organi	sms		1/		
	(c)	Patch, matrix as	nd cor	ridor			-		
	(d)	Porosity		4	4		(111)		

49. A drowned river valley estuary is formed when?

(1) a barrier island or sand bar separates a section of the coast where fresh water enters.

(a) and (b) only(a), (b), (c) and (d)

- (2) sea level rose at the end of the last glacial age invading low lands and rivers.
- (3) a deep valley is created by retreating glaciers.
- (4) land sinks due to movements of the crust.

50. Fringing reef generally develops :

Choose the **correct** code:

(a), (b) and (c) only

(a) only

(1)

(3)

- (1) as a narrow band close to a shore.
- (2) at some distance from the coast.
- (3) as a ring around central lagoon.
- (4) as a patch in the pelagic zone of the sea.

51 .	According to River Continuum Concept of Vannote et. al (1980), the major sources of energy
	in medium - sized streams are:

- (a) Fine particulate organic matter
- (b) Coarse particulate organic matter
- (c) Algae
- (d) Aquatic plants

Choose the **correct** code:

(1) (a) only

- (2) (b) and (c) only
- (3) (a), (c) and (d) only
- (4) (a), (b), (c), and (d

52. Self purification of running streams may be due to :

- (1) oxidation, sedimentation and coagulation
- (2) sedimentation, dilution and oxidation
- (3) dilution, sedimentation and coagulation
- (4) dilution, oxidation and coagulation

53. Given below are two statements. One labelled as **Assertion (A)** and the other labelled as Reason(R):

Assertion (A): The efficiency of a PV cell is limited by the quantum processes involving incident photons and the electrons in the cell.

Reason (R): The band gap energy of the semiconducting material used to fabricate PV cell is less in comparison to the energies of photons of insolation.

Choose the **correct** answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).

10

- (3) **(A)** is true, but **(R)** is false.
- (4) (A) is false, but (R) is true.

J-08918

- 54. Given below are two statements, one labelled as **Assertion (A)** and the other labelled as Reason(R):
 - **Assertion (A):** The recoverable renewable energy is a fraction of the resource base of the renewable sources available in the world.
 - **Reason (R):** Much of the renewable energy is either of high entropy or too inaccessible to use.

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) **(A)** is false, but **(R)** is true.
- 55. Given below are two statements. One labelled as **Assertion (A)** and the other labelled as **Reason (R)**:
 - **Assertion (A):** Tidal range is a critical factor in determining whether an estuary would be useful for tidal power generation.
 - **Reason (R):** Tidal power is proportional to tidal range.

Choose the **correct** answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) (A) is false, but (R) is true.
- **56.** A single solar cell on illumination by insolation of about 800 Wm⁻² produces a voltage of 0.5 V and a current upto 2.0 A. The efficiency of the solar cell is 12.5%. The area of the cell is :
 - (1) $2 \times 10^{-2} \text{ m}^2$

(2) $5 \times 10^{-3} \text{ m}^2$

(3) $4 \times 10^{-4} \text{ m}^2$

- (4) 10^{-2} m²
- 57. If the ion density in a high temperature fusion plasma consisting of deuterium and tritium fuel is 2.5×10^{20} m⁻³, the minimum confinement time required for nuclear fusion to produce net energy will be :
 - (1) 0.5 s
- (2) 0.4 s
- (3) 0.25 s
- (4) 4.0 s

	(3)	Geopressured	(4)	Нус	lrothermal						
59.	Whi	ch of the following su	bstances has the	maxim	um energy conte	nt (MI	/m ³) ?				
	(1)	Methane gas	(2)		ıid butane	- (-)	-5%				
		· ·	, ,			- 5	10 2				
	(3)	Natural gas	(4)	пус	lrogen gas	-	1.				
					×1	4	22				
60.		n below are two stat on (R) :	ements. One labe	elled as	s Assertion (A) a	nd the	e other labelled as				
	Asse	rtion (A): The nucl large end	ei of elements surgy potentials.	uch as	plutonium and ı	ıraniu	m have extremely				
	Reas	on (R): They are	in states of therr	nodyna	amic non-equilibr	ium.					
	Cho	ose the correct answe	r:		mel						
	(1)	Both (A) and (R) are	e correct and (R)	is the o	correct explanatio	n of (2	A).				
	(2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).										
	(3)	(A) is true, but (R) is	s false.								
	(4)	(A) is false, but (R) i	s true.								
		1 0	10								
4	0.7	9.	235								
61.		nuclear fission reactio									
1	be 0.	223 u. How much ene	rgy will be release	ed from	1 5.0 gram of U_{92}^{235}	? (1u	$u = 1.66 \times 10^{-27} \text{kg}$				
	(1)	426.7 GJ (2)	85.3 GJ	(3)	170.6 GJ	(4)	42.6 GJ				
	(
62.	Whi	ch of the following b	iofuels is produc	ed fro	m acidification a	nd dis	tillation of woody				
	crop	_	1				, and the second se				
	(1)	Methanol (2)	Ethanol	(3)	Producer gas	(4)	Esters				
J-089	918		1	2			Paper-II				

At present, which geothermal resource is exploited on commercial scale in the world ?

(2)

Hot dry rock

58.

(1)

Magma

- How thick a sound barrier be made if it is to attenuate efficiently sound transmitted at 63. 5.0 kHz?
 - (1) $\sim 2.0 \text{ cm}$
- (2) $\sim 3.3 \text{ cm}$ (3) $\sim 6.6 \text{ cm}$
- (4) $\sim 2.0 \text{ m}$
- Identify the most reducing water sample as inferred from pE values given below:
 - (1) pE = 15
- (2) pE = 12
- (3) pE = 7
- Given below are two statements. One labelled as Assertion (A) and the other labelled as 65. Reason (R):
 - **Assertion (A):** In an unpolluted and dust free atmosphere, rainwater pH is \sim 5.6.
 - Dissolution of carbon dioxide in rainwater produces hydrogen ions. Reason (R):

- Both (A) and (R) are correct and (R) is the correct explanation of (A). (1)
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (A) is true, but (R) is false. (3)
- (A) is false, but (R) is true.
- As per BIS, the recommended pH for drinking water is:
 - (1) 5.0 6.5
- (2) 6.5 8.5
- (3) 7.5 9.0
- (4) 8 10
- In the disinfection of water by chlorine, the most reactive chlorine species is :
 - (1)
- C10 -
- HOC1 (3)
- $C1^{-}$ (4)

- **68.** Given below are two statements. One labeled as **Assertion (A)** and the other labeled as **Reason (R)**:
 - Assertion (A): Black carbon contributes to global warming.
 - **Reason (R):** Black carbon behaves like a black body.

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) (A) is false, but (R) is true.
- 69. Which of the following air pollutants are responsible for photochemical smog?
 - (a) Oxides of nitrogen
- (b) Ozone
- (c) Unburnt hydrocarbons
- (d) Sulphur dioxide

Choose the **correct** code:

- (1) (a), (b) and (d) only
- (2) (a), (b) and (c) only

(3) (c) and (d) only

- (4) (a) and (c) only
- **70.** Temporary hardness is caused by :
 - (1) Calcium sulfate

- (2) Magnesium sulfate
- (3) Magnesium carbonate
- (4) Magnesium chloride
- 71. Bioremediation of soil is **not** achieved readily if:
 - (1) Contaminant is a lighter molecule.
 - (2) Contaminant has high aromaticity.
 - (3) Contaminant is a polar molecule.
 - (4) Contaminant is non-halogenated.

J-08918

14

72.	Given below are two statements. One labeled as Assertion (A) and the other labeled as
	Reason (R):

Assertion (A): Traffic policemen in urban centres generally suffer from oxygen deficiency.

Carbon dioxide forms a very strong complex with haemoglobin. Reason (R):

Choose the **correct** answer:

- Both (A) and (R) are correct and (R) is the correct explanation of (A). (1)
- Both (A) and (R) are correct and (R) is not the correct explanation of (A). (2)
- (A) is true, but (R) is false. (3)
- (4)(A) is false, but (R) is true.

A bar graph whose bars are drawn in decreasing order of frequency is:

(1)histogram frequency polygon

(3)pareto chart cumulative bar chart

- 4.43 kg/day (2) 2.14 kg/day
- (3) 4.80 kg/day
 - (4) 3.12 kg/day

75. A sample of 10 measurements of diameter of trees in a survey gives a mean of 43.8 cm and a standard deviation of 0.6 cm. Given
$$t = 2.26$$
, the 95% confidence limit for the actual diameter is in between :

- 41.54 and 46.06 cm
- (2) 43.348 and 44.252 cm
- (3) 43.20 and 44.812 cm
- (4) 43.252 and 44.348 cm

In a fish population of a pond it is believed that males and females are in equal proportion. If 76. out of 200 fish in a catch, 120 are male and 80 are female, then the Chi square (χ^2) value is :

- 16
- 12

77.		ultiple regression ndent variable tha								ince in the
	(1)	R Value		(2)	Adju	ısted R ² Va	alue			
	(3)	'r' Value		(4)	1/R	Value				
78.	_	opulation size at tic growth, what			,			-		n follows
	(1)	5.32	(2) 9.60		(3)	0.18	1	(4)	3.80	
79.	the wind	city of area (8 km vinter season betv I is blowing in the entration of CO at Id be:	ween 4 pm and 8 ne city at a speed	8 pm. I d of 4.	Ouring 0 m/	g this perions along the	od mixi e side o	ng hei of the	ight is 1 city. If	00 m. The
	(1)	0.2 mg/m^3	4	(2)	3.2 r	ng/m³				
	(3)	2.0 mg/m ³	713	(4)	20.0	mg/m ³				
80.		e Gaussian plume olume rise which (tive st	ack he	eight is the	sum of	actua	l stack l	neight and
4	(a) (b)	buoyancy of exh momentum of ex	-)							
1	(c)	stability of the a	tmosphere							
	(d)	emission rate of	the pollutants							
	Choo	ose the correct coo	de:							
	(1)	(a), (b) and (d)		(2)	(a), ((b), (c) and	(d)			
	(3)	(a), (c) and (d)		(4)	(a), ((b) and (c)				
J-089	918			16						Paper-II

- 81. Given below are two statements. One labelled as **Assertion (A)** and the other labelled as **Reason (R)**:
 - **Assertion (A):** Global shipping is a source of net cooling of atmosphere.
 - **Reason (R):** Ships are responsible for significant amounts of sulphur emissions.

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) **(A)** is false, but **(R)** is true.
- 82. Given below are two statements. One labeled as **Assertion (A)** and the other labeled as **Reason (R)**:
 - **Assertion (A):** Ozone depletion in stratosphere causes melanoma.
 - Reason (R): Ozone is a gas which largely absorbs UV A radiation.

Choose the **correct** answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) (A) is false, but (R) is true.
- 83. Identify the incorrect statement with regard to saline and alkaline soil:
 - (1) These show white incrustation of salts of calcium, magnesium and sodium on the soil surface.
 - (2) These soils are infertile.
 - (3) These soils are poor in drainage.
 - (4) These soils are pervious.

J-08918 Paper-II

- 84. Given below are two statements. One labeled as **Assertion (A)** and the other labeled as Reason (R):
 - **Assertion (A):** Phosphorus limits eutrophication if nitrogen is eight times more abundant (weight wise) than phosphorus in fresh water.
 - **Reason (R):** About eight times more nitrogen (weight wise) is required than phosphorus for plant growth.

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) **(A)** is true, but **(R)** is false.
- (4) (A) is false, but (R) is true.
- 85. World Biodiversity day is celebrated every year on
 - (1) March 22
- (2) May 22
- (3) July 22
- (4) November 22
- **86.** To achieve its objectives, the International Solar Alliance aims to mobilize financial investment over:
 - (1) Z 1 trillion
 - (2) Z 100 billion
 - (3) Z 500 billion
 - (4) Z 200 billion
- 87. A Ramsar site not able to perform its ecological functions comes under:
 - (1) Montreal protocol
 - (2) Montreux record
 - (3) Montreal record
 - (4) Montreaux protocol

J-08918

88.	Which of the following bacterium is called as the superbug that could clean up oil spills?						
	(1)	Bacillus denitrificans					
	(2)	Pseudomonas denitrificans					
		·					
	(3)	Pseudomonas putida					
	(4)	Bacillus subtillis					
		20 - 20					
89.	9. For the scientific research or investigations, the chief wildlife warden may grant the perr to public to enter a sanctuary under the section :						
	(1)	35 of The wildlife (Protection) Act 1972					
	(2)	28 of The Wildlife (Protection) Act 1972					
	(3)	72 of The Indian Forest Act 1922					
	(4)	73 of The Indian Forest Act 1927					
		AL PERSON					
90.	Pow	er to issue notification reserving the trees or class of trees in a protected forest lies with:					
	(1)	Ministry of Environment, Forest and Climate Change, GOI					
		THE STATE OF THE S					
	(2)	Biodiversity Board					
	(3)	State Government					
	(4)	Central Government					
4	1						
01	T	Airly of the Color of the ACII of according to the best of the color o					
91. In which stage of decomposition of landfilled waste, the bacteria acetogen helps to reduce the pH of leachate and allows heavy metals to be solubilized?							
	(1)	Aerobic Phase					
	(2)	Acid Phase					
	(3) Unsteady Methanogenisis Stage						
	(4)	Steady Methanogenisis Stage					

19

J-08918

92.	Choose the correct sequence in resource recovery for mixed solid waste :						
	(1)	Screening → Air classi	fier \rightarrow Sh	redder o Magnetic separation			
	(2)	Magnetic separation –	> Shredder	$r \rightarrow Screening \rightarrow Air classifier$			
	(3)	$Shredder \rightarrow Screening$	→ Air cla	assifier \rightarrow Magnetic separation			
	(4)	Screening \rightarrow Shredder	→ Magne	etic separation \rightarrow Air classifier			
93.		ght mulching and con agement under the prod		of waste is a component of integrated solid waste			
	(1)	recycling		-14			
	(2)	disposal		200			
	(3)	source reduction					
	(4)	disinfection					
94.	Matc	h the List-I and List-II.	Identify	the correct answer from the code given below :			
		List-I	41	List-II			
		(Waste types)	MS	(Disposal methods)			
	(a)	Human tissues	(i)	Disinfection and shredding			
	(b)	Laboratory wastes	(ii)	Disinfection and discharge into drains			
	(c)	Waste sharps	(iii)	Autoclaving			
4	(d)	Liquid waste	(iv)	Incineration and deep burial			
(
	7	(a) (b) (c) (d)					
	(1)	(iv) (iii) (i) (ii)					
	(2)	(ii) (iii) (iv) (i)					
	(3)	(iii) (iv) (ii) (i)					
	(4)	(iv) (iii) (ii) (i)					

95.		ch of the following materials are used as landfill sealants for the control of hate ?	gas and
	(a)	Fly ash	
	(b)	Lime	4
	(c)	Bentonite	25
	(d)	Butyl rubber	-
	Choo	ose the correct code :	
	(1)	(a) and (b) only	
	(2)	(b) and (c) only	
	(3)	(c) and (d) only	
	(4)	(d) and (a) only	
		- 46	
96.	Selec	ct the correct sequence with reference to Environmental Management System Is	SO1401 :
4	(1)	Environmental policy \rightarrow Implementation and operation \rightarrow Checking and coaction \rightarrow Management review	orrective
((2)	Implementation and operation \rightarrow Checking and corrective action \rightarrow Managemental policy	nt review
	(3)	Implementation and operation \rightarrow Environmental policy \rightarrow Checking and coaction \rightarrow Management review	orrective
	(4)	Checking and corrective action \rightarrow Management review \rightarrow Implementation and o \rightarrow Environmental policy	peration
J-089	918	21 I	Paper-II
		11 11 11 11 11 11 11 11 11 11 11 11 11	1

97. Match the List-I and List-II. Identify the correct answer from the code given below:

List-I

List-II

(EIA process)

(Features)

- (a) Environmental Baseline
- (i) Systematic Appraisal of EIS
- (b) Development Action
- (ii) Avoid, reduce and remedy for impacts
- (c) Mitigation measures
- (iii) Rationale of the project

(d) Review

(iv) Establishment of present and future state of environment

Code:

- (a) (b)
- (c)
- (d)
- (1) (iv)
- (iii)
- (ii) (i)
- (2)
- (ii)
- - (iii) (iv)
- (3)
- (i) (ii)
- (iii) (i
 - (iv) (i)
- (4)
- (iii)
- (iv)
- (i) (ii)
- 98. The type of project in 'B' category in the schedule attached with EIA notification of $14^{\rm th}$ September 2006, needs environmental clearance from :
 - $\hbox{(a)} \quad \hbox{Central Govt. without the recommendation of the Expert Appraisal Committee}.$
 - (b) State Govt. on the recommendation of the State Expert Appraisal Committee.
 - (c) State Environmental Impact Assessment Authority on the recommendation of State Expert Appraisal Committee.

Choose the **correct** code:

- (1) (a) and (b) only
- (2) (b) and (c) only
- (3) (c) only
- (4) (c) and (a) only

J-08918

99. Match the List-I and List-II. Identify the correct answer from the code given below:

(i)

List-I

List-II

(Process)

(Description)

- Development action (a)
- (b) Environmental baseline
- (c) Impacts prediction
- (ii) Development stages and processes (iii) Establishment of future and present state of environment

Compensation for adverse impacts

- Magnitude of identified change in environment (iv)
- (d) Mitigation measures
- Code:
 - (a) (b) (d) (c)
- (iii) (1)(ii) (iv) (i)
- (2)(iii) (iv) (i) (ii)
- (3) (iv) (i) (ii) (iii)
- (ii) (iii) (4) (i) (iv)
- 100. Battelle Columbus environmental evaluation system is used to assess the impact of :
 - Mining development projects. (1)
 - (2) Pulp and paper mill projects.
 - (3) Water resources projects.
 - (4) Highway projects.

23

Space For Rough Work

J-08918 Paper-II