

Register Number:

Date: 21-11-2020

St. Joseph's College (Autonomous), Bangalore-27 M.Sc. Mathematics - III Semester End Semester Examination: November- 2020 MTDE9418 – Mathematical Methods

Duration: 2 1/2 hrs

Max. Marks: 70

- 1. The paper contains two pages.
- 2. Answer any SEVEN FULL questions.
- 1. Find the solution of the Fredholm integral equation of second kind

$$u(x) = \cos x + \lambda \int_{0}^{\pi} \sin(x-t)u(t) dt.$$

[10M]

2. a) Find the solution of an integral equation with the aid of the resolvent kernel.

$$\phi(x) = e^{x^2} + \int_0^x e^{x^2 - t^2} \phi(t) dt.$$

[5M]

b) Using the method of successive approximation solve the integral equation

$$g(x) = 1 + \int_0^x g(t) dt$$
 by taking $g_0(x) = 0$.

[5M]

3. a) Solve an integral equation $y(x) = \frac{x^2}{2} - \int_0^x y(t)(x-t) dt$ by Laplace transform method.

[5M]

b) Transform the boundary value problem $\frac{d^2y}{dx^2} + xy = 1$, y(0) = y(1) = 0 into an integral equation.

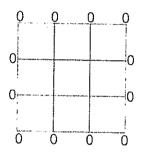
[5N]

4. a) Examine the asymptotic behaviour of $\int_{-\pi}^{\infty} e^{-t^4} dt$ as $x \to +\infty$.

[5M]

b) Find the leading term of the asymptotic expansion for the given

$$I(x) = \int_{0}^{\infty} e^{-x \sinh^{2} t} dt \text{ as } x \to \infty.$$


[5M]

5. State and prove Watson's lemma and Evaluate $\int_{0}^{10} \frac{e^{-xt}}{1+t} dt$ as $x \to \infty$ using Watson's lemma.

[10M]

- 6. Solve the equation $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1 at the points x = 0.1 & x = 0.2 taking step length h = 0.1 using Runge-kutta method of order four. [10M]
- 7. Use Taylor's series method to find y at x=0.1,0.2,0.3. Apply Adams-Bashforth method for $\frac{dy}{dx}=x^2+y^2$, y(0)=1 to calculate y(0.4). [10M]
- 8. Using Crank-Nicholson method solve $u_t = u_{xx}$ subject to $u(x,0) = 100 \, x(1-x), \quad u(0,t) = u(1,t) = 0, \quad t>0, \quad 0 < x < 1. \text{ Compute } u \text{ for one time step}$ by taking $h = \frac{1}{4}, \quad k = \frac{1}{64}.$ [10M]
- 9. Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = y = 0, x = y = 3 with u = 0 on the boundary and mesh length equal to 1.

[10M]

10. Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking h = 1, $upto \ t = 1$. The boundary conditions are u(0,t) = u(5,t) = 0, $u_t(x,0) = 0$ and $u(x,0) = x^2(5-x)$. [10M]

MTDE9418- A-20